Cosmic Rays in the Disk and Halo of Galaxies

نویسندگان

  • V. A. Dogiel
  • D. Breitschwerdt
چکیده

We give a review of cosmic ray propagation models. It is shown that the development of the theory of cosmic ray origin leads inevitably to the conclusion that cosmic ray propagation in the Galaxy is determined by effective particle scattering, which is described by spatial diffusion. The Galactic Disk is surrounded by an extended halo, in which cosmic rays are confined before escaping into intergalactic space. For a long time cosmic ray convective outflow from the Galaxy (galactic wind) was believed to be insignificant. However, investigations of hydrodynamic stability and an analysis of ISM dynamics (including cosmic rays) showed that a galactic wind was emanating near the disk, and accelerating towards the halo, reaching its maximum velocity far away from the disk. Therefore convective cosmic ray transport should be important in galactic halos. Recent analysis of the gamma-ray emissivity in the Galactic disk of EGRET data, which showed that cosmic rays are more or less uniformly distributed in the radial direction of the disk, as well as the interpretation of soft X-ray emission in galactic halos, give convincing evidence of the existence of a galactic wind in star forming galaxies.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Time Delays in Cosmic Ray Propagation

Cosmic Rays (CR) travel at speeds essentially indistinguishable from the speed of light. However whilst travelling through magnetic fields, both regular and turbulent, they are delayed behind the light since they are usually charged particles and their paths are not linear. Those delays can be so long that they are an impediment to correctly identifying sources which may be variable in time. Fu...

متن کامل

Transport of cosmic rays in the nearby starburst galaxy NGC 253 ⋆

Radio halos require the coexistence of extra-planar cosmic rays and magnetic fields. Because cosmic rays are injected and accelerated by processes related to star formation in the disk, they have to be transported from the disk into the halo. A vertical large-scale magnetic field can significantly enhance this transport. We observed NGC 253 using radio continuum polarimetry with the Effelsberg ...

متن کامل

Galactic Gamma-Ray Bursters - The Cosmic-Ray Sources at all Energies

We propose a new paradigm for the origin of nonsolar hadronic cosmic rays (CRs) at all energies: Highly relativistic, narrowly collimated jets from the birth or collapse of neutron stars (NSs) in our Galaxy accelerate ambient disk and halo matter to CR energies and disperse it in hot spots which they form when they stop in the Galactic halo. Such events, seen as cosmological gammaray bursts (GR...

متن کامل

ar X iv : 0 80 8 . 01 61 v 1 [ as tr o - ph ] 1 A ug 2 00 8 Gamma Rays from Ultra - High Energy Cosmic Rays in Cygnus A

Ultra-high energy cosmic rays (UHECRs) accelerated in the jets of active galactic nuclei can accumulate in high magnetic field, ∼ 100 kpc-scale regions surrounding powerful radio galaxies. Photohadronic processes make ultra-relativistic electrons and positrons that initiate electromagnetic cascades, leading to the production of a γ-ray synchrotron halo. We calculate the halo emission in the cas...

متن کامل

Galactic γ-ray bursters – an alternative source of cosmic rays at all energies

We propose a new hypothesis for the origin of the major part of non-solar hadronic cosmic rays (CRs) at all energies: highly relativistic, narrowly collimated jets from the birth or collapse of neutron stars (NSs) in our Galaxy accelerate ambient disk and halo matter to CR energies and disperse it in hot spots which they form when they stop in the Galactic halo. Such events are seen as cosmolog...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009